中国城市煤炭消费总量控制方案和政策研究

汇报机构:中国人民大学环境学院

2015-06-29

课题总体研究思路

研究目的

减少中国煤炭消费总量,控制大气污染,减少碳排放,保证能源安全。

特别是大气气污染严重、煤 炭消费量大、煤炭资源稀缺、 可再生能源丰富、能效低、 以煤炭相关产能过剩的城市

研究对象

- 中国地级及以上城市
- 以煤炭为燃料的行业部门

研究结果

提出利用管制、经济、 技术的方式,实现煤 炭消费总量减少

研究方法

- 统计分析方法
- 地理信息系统
- 因素分解法
- 情景分析一计量经济模型
- 多指标评价法
- 案例研究和政策工具分析

研究数据及其来源

相关社会经济数据

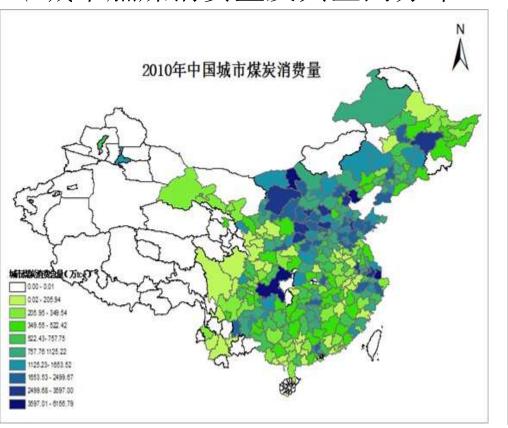
人口数据来自中国经济与社会发 展统计数据库2011年城市统计数据;

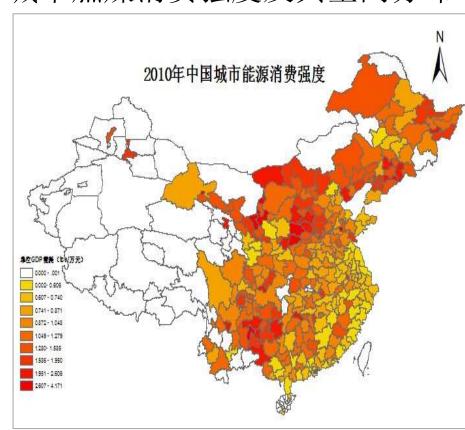
地区生产总值数据来源于《中国 区域经济统计年鉴2011》和对某些 指标数据进行必要修正

城市能源消费数据

某一城市能源消费总量=某一城市单位地区生产总值能耗×某一城市不变价地区生产总值,并根据省的能源消费总量进行修正

城市煤炭消费数据


煤炭消费量数据来自2011年 中国能源统计年鉴,各市煤 炭消费量数据根据煤炭消费 占比计算得到


全国能源和煤炭消费状况(2001-2013)

分城市、分行业燃煤消费情况

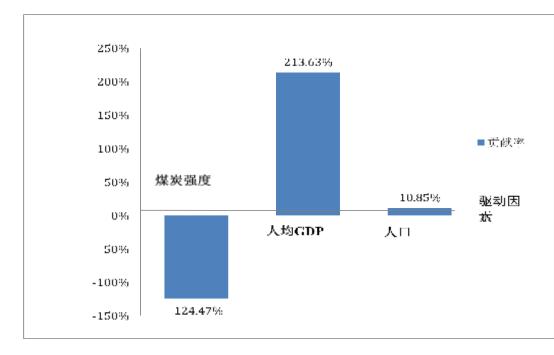
◆城市燃煤消费量及其空间分布 ◆城市燃煤消费强度及其空间分布

▲煤炭燃料消费的主要行业

火电、钢铁、水泥、化工、供热、一般工业、批发零售餐饮业、居民 生活消费

煤炭总量控制的需求

- ₩ 应对气候变化挑战—碳排放
- ◆ 改善大气污染现状—空气质量
- ☞保护生态-资源环境
- ♣提出煤炭消费总量制约目标的 省市(地区)



城市燃煤消费的影响因素

城市燃煤消费的驱 动因素

- "十一五"期间煤炭消耗驱动因素为煤炭强度、 人均GDP和人口
- 煤炭强度:分解值为负, 煤炭强度下降发挥负向 作用
- 人均GDP: 分解值和贡献率为正,发挥正向作用
- 人口:分解值及贡献率的数值较低

	项目 具体因素	比值	分解值	贡献率
2010年与	煤炭消耗量(万 tce)	1. 201	0. 1835	100. 00%
2005年比	煤炭强度(万 tce/亿元)	0. 796	-0. 2284	-124. 47%
	人均 GDP (元)	1. 480	0. 3920	213. 63%
	人口 (万人)	1. 020	0. 01991	10. 85%

2005-2010 年煤炭消费驱动因素贡献比率

城市燃煤消费的影响因素分析

- ●阻碍煤炭消费总量控制的 因素
- 基础设施建设
- 城市化进程
- 煤炭价格的变化

城市燃煤消费现状分类

☎按市区常住人口分类

类别编号	城市类型	市区常住人口范围(万人)	城市数量	所占比例
S	直辖市	_	4	1.4%
A	特大城市	>300	29	9.9%
В	大城市	100-300	102	34.8%
С	中等城市	50-100	112	38. 2%
D	小城市	<50	46	15. 7%

♠按煤炭消费强度分类

	低煤炭消费强度城市	中等煤炭消费强度城市	高煤炭消费
煤炭消费强度区间			
(单位: tce/万	(0.123, 0.632)	(0.643, 1.192)	(1.230, 5
元)			
城市个数(单位:	139	95	59
个)			

▲同时基于人口和煤炭消费 强度的城市分类(13类城

一 号) 类别 代码	城市类型	煤炭消费强度	煤炭消 费强度 均值	煤炭消费强 度范围	城市数量
1	S	直辖市	低	0. 361	0. 145-0. 628	4
2	A-1	特大城市	低	0. 396	0. 206-0. 622	20
3	A-2	特大城市	中	0. 933	0. 668-1. 261	7
4	A-3	特大城市	高	1. 721	1. 516-1. 927	2
5	B-1	大城市	低	0. 406	0. 219-0. 632	59
6	B-2	大城市	中	0.863	0. 647-1. 159	32
7	B-3	大城市	高	1. 679	1. 230-2. 737	11
8	C-1	中等城市	低	0. 424	0. 123-0. 617	38
9	C-2	中等城市	中	0.868	0. 643-1. 192	43
10	C-3	中等城市	高	2. 029	1. 234-5. 077	31
11	D-1	小城市	低	0. 443	0. 216-0. 619	18
12	D-2	小城市	中	0. 865	0. 663-1. 188	14
13	D-3	小城市	高	2. 278	1. 348-4. 643	14

	城市清单
S	重庆、天津、上海、北京
A-1	南京、济南、西安、长春、淮安、清远、武汉、大连、沈阳、苏州、杭州、成都、厦门、合肥、南宁、东莞、佛山、广州、汕头、深圳
A-2	乌鲁木齐、淄博、鞍山、哈尔滨、昆明、徐州、郑州
A-3	太原、唐山
B-1	襄阳、贵港、益阳、绵阳、贺州、来宾、柳州、泸州、常德、宜春、镇江、自贡、遂宁、淮北、湖州、保定、荆州、阜阳、玉林、南充、淮南、茂名、巴中、南昌、凉山彝族自治州、嘉兴、长沙、随州、宿州、金华、宁波、青岛、资阳、南通、泉州、天水、无锡、六安、烟台、惠州、抚州、钦州、温州、蚌埠、芜湖、福州、莆田、亳州、常州、江门、台州、海口、连云港、中山、宿迁、扬州、盐城、湛江、珠海
B-2	平顶山、济宁、武威、日照、齐齐哈尔、新乡、石家庄、广安、临沂、洛阳、西宁、聊城、抚顺、宝鸡、锦州、乐山、吉林、大庆、南阳、鄂州、宜昌、泰安、商丘、永州、菏泽、株洲、潍坊、信阳、内江、漯河、衡阳、开封
B-3	莱芜、包头、大同、邯郸、银川、呼和浩特、贵阳、安阳、赤峰、兰州、枣庄
C-1	商洛、咸宁、衡水、延安、松原、南平、张家界、宜宾、德阳、池州、东营、威海、沧州、陇南、广元、泰州、吉安、 九江、绍兴、北海、防城港、舟山、宜城、桂林、赣州、廊坊、安庆、丽水、揭阳、滁州、肇庆、漳州、白城、宁德、 阳江、汕尾、三亚、玉溪
C-2	萍乡、张掖、濮阳、榆林、曲靖、汉中、攀枝花、湘潭、双鸭山、营口、承德、鹤壁、四平、保山、黄石、辽阳、昭 通、新余、滨州、佳木斯、安康、衢州、阜新、秦皇岛、盘锦、丹东、郴州、马鞍山、朝阳、邵阳、咸阳、牡丹江、 岳阳、孝感、眉山、德州、酒泉、驻马店、十堰、周口、荆门、绥化、韶关
C-3	乌海、临汾、石嘴山、运城、六盘水、长治、晋中、巴彦淖尔、忻州、安顺、阳泉、渭南、黔西南布依族苗族自治州、 七台河、固原、张家口、遵义、伊春、本溪、平凉、白银、朔州、铁岭、鹤岗、鸡西、邢台、白山、通辽、焦作、鄂 尔多斯、铜川
D-1	河池、定西、黄冈、潮州、云浮、铜陵、龙岩、鹰潭、上饶、雅安、景德镇、梅州、阿坝藏族羌族自治州、庆阳、甘 孜藏族自治州、梧州、河源、黄山
D-2	辽源、金昌、葫芦岛、丽江、三门峡、克拉玛依、达州、普洱、许昌、三明、崇左、怀化、临沧、黑河
D-3	吴忠、中卫、嘉峪关、吕梁、乌兰察布、黔东南苗族侗族自治州、晋城、毕节、黔南布依族苗族自治州、铜仁、通化、 娄底、呼伦贝尔、百色

城市燃煤消费现状的类别分析

煤岩消

▲十三类城市的社会经济、能源和煤炭消费

2010 年当

	关			2010 47 3			图2.4/5 JEK		
	别	常住人	常住市	年价地区	人均地区	能源消	度	煤炭消	费强度
编	代	口(万	区人口	生产总值	生产总值	费量(万	(Tce/	费量(万	(Tce/
号	码	人)	(万人)	(亿元)	(元)	tce)	万元)	tce)	万元)
1	S	2112. 12	1669. 14	11123. 13	56263. 65	8022. 64	0. 76	3519.84	0. 36
2	A-1	804. 84	563. 97	4129. 29	49687.89	2760. 35	0. 69	1566. 03	0. 40
3	A-2	651. 65	392. 01	2444. 62	39775. 19	2810. 69	1. 25	2169. 95	0. 93
4	A-3	589. 33	313. 02	2866. 87	46668.37	5512. 18	1. 80	4689. 25	1. 72
5	B-1	484. 20	166. 30	1470. 02	29160.63	1035. 67	0. 78	563. 59	0. 41
6	B-2	515. 91	146. 00	1252. 99	25682. 60	1457. 48	1. 24	1087. 18	0. 86
7	B-3	386. 67	181. 34	1186. 47	34470. 49	1956. 70	1. 67	1966. 58	1. 68
8	C-1	333. 46	69. 66	835. 47	26895. 26	624. 23	0. 74	359. 90	0. 42
9	C-2	331. 98	76. 00	707. 01	24509. 97	872. 39	1. 27	606. 32	0.87
10	C-3	261. 88	72. 33	582. 74	25814. 90	1121.82	2. 03	1140. 66	2. 03
11	D-1	261. 18	39. 48	430. 38	19305. 37	365. 60	0.84	195. 25	0. 44
12	D-2	241. 48	34. 65	507. 35	31277. 46	641. 69	1. 25	429. 47	0.87
13	D-3	280. 24	39. 08	457. 60	21534. 91	961.85	2. 34	944. 87	2. 28

城市燃煤消费现状的类别分析

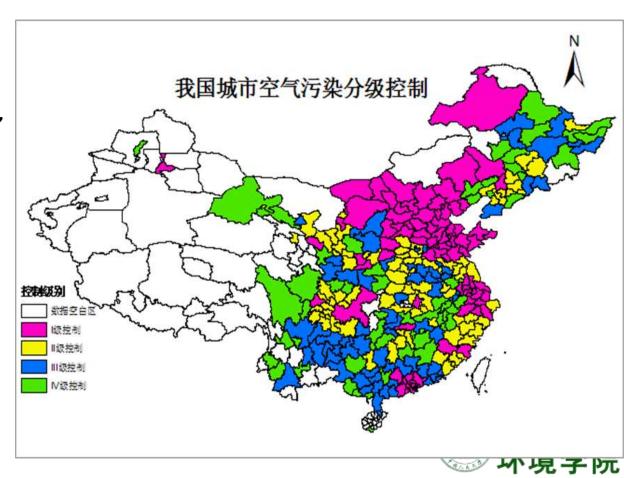
◆十三类城市经济发展阶段

均处于工业化中期和后期,S类、A-1类、A-2类和A-3 类城市的人均地区生产总值位于5981至11214美元间, 处工业化后期,其余城市人均地区生产总值位于2990 至5981美元之间,处工业化中期

◆十三类城市煤炭用途

- 分为发电、炼焦、工业直接利用、供热、民用和其他六个部分, 计算了每种按用途的煤炭消耗量及占总煤炭消耗量的比例
- 除极个别类型城市外,发电煤炭、居民生活煤炭比例差别不大
- 供热、炼焦、工业直接利用、其它比例的差别较大

								工业直		居民生			
	类	发电煤	发电煤	炼焦煤炭	炼焦	供热煤	供热煤	接利用	工业直	活煤炭	居民	其他煤	其 他
编	别	炭 消 费		消费量	煤炭	炭消费		煤炭消	接利用		生 活	炭消费	煤炭
号	代	量(万	炭比例	(万	比例	量(万	炭比例	费量	煤炭比	消费量	煤炭	量(万	比例
	码	tce)	(%)	tce)	(%)	tce)	(%)	(万	例(%)	(万	比例	tce)	(%)
								tce)		tce)			
1	S	1482.63	42. 12	356. 95	10. 14	349. 15	9. 92	939. 28	26. 69	104. 98	2. 98	286. 86	8. 15
2	A-1	769. 27	49. 12	112. 60	7. 19	113. 59	7. 25	477. 78	30. 51	23. 94	1. 53	68. 84	4. 40
3	A-2	825. 67	38. 05	353. 81	16. 31	219. 73	10. 13	520. 71	24. 00	44. 99	2. 07	205. 05	9. 45
4	A-3	1007.66	21. 49	1887. 19	40. 24	153. 55	3. 27	788. 81	16. 82	122. 17	2. 61	729. 87	15. 56
5	B-1	260. 26	46. 18	44. 64	7. 92	46. 74	8. 29	174. 31	30. 93	10. 99	1. 95	26. 64	4. 73
6	B-2	383. 75	35. 30	157. 33	14. 47	81.64	7. 51	332. 21	30. 56	29. 58	2. 72	102. 68	9. 44
7	B-3	796. 93	40. 52	356. 68	18. 14	95. 08	4. 83	485. 84	24. 70	76. 17	3.87	155. 89	7. 93
8	C-1	162.36	45. 11	31. 78	8.83	24. 73	6.87	109. 49	30. 42	10. 98	3. 05	20. 56	5. 71
9	C-2	241.87	39. 89	76. 90	12. 68	39. 15	6. 46	173. 07	28. 54	22. 08	3.64	53. 25	8. 78
10	C-3	476. 23	41. 75	244. 28	21. 42	53. 76	4.71	168. 18	14. 74	52. 44	4. 60	145. 76	12. 78
11	D-1	87. 54	44. 84	15. 64	8. 01	6. 47	3. 31	71. 69	36. 72	5. 11	2. 62	8. 80	4. 51
12	D-2	158.36	36. 87	54. 93	12. 79	26. 68	6. 21	141. 91	33. 04	13. 47	3. 14	34. 12	7. 94
13	D-3	409.33	43. 32	156. 91	16. 61	48. 28	5. 35	180. 12	19. 06	37. 35	3. 95	114. 50	12. 12


城市大气污染分级制约的类别分析

◆分级标准

- ●大气污染防治政策要求及各省市煤炭总量控制政策
- ●各城市空气质量现状
- ●煤炭消费强度

基于以上标准分析293个城市情况,判断城市所属类别, 1级、II级、III级、IV级代 表空气污染制约重要性依次 降低

大气污染制约级别	城市数量
I 级制约	83
II 级制约	84
III 级制约	71
IV 级制约	55

不同制约类别城市的煤控目标

▲不同制约级别城市相对于2012年的煤炭消费总量制约目标

目标年	I级制约城市	II级制约城市	III级制约城市	IV级制约城市
2017	峰值	10%	15%	30%
2020	-5%	峰值	20%	40%
2025	-10%	-5%	峰值	峰值
2030	-18%	-8%	15%	40%
2040	-30%	-18%	8%	30%
2050	-50%	-30%	-8%	20%

采暖对城市燃煤消耗影响及减量政策分析

▲采暖对城市燃煤消耗影响分析

五类城市(S、A、B、C、D)采暖对城市能耗和煤耗情况影响

• 采暖城市的能源和煤炭消费量均高于非采暖区

城市类别	能源消耗量均值 (万吨标准煤)	煤炭消耗量均值 (万吨标准煤)
采暖城市	1769. 91	1546. 17
非采暖城市	1199. 5	1199. 5

- 采暖型城市规模越小,煤炭消费比重越高
- 非采暖城市未体现煤炭消费比重随城市规模变动

采暖对城市燃煤消耗影响及减量政策分析

▲采暖锅炉燃煤减量措施的案例研究

◆集中供热取代分散供热的案例及政策研究

案例城市——本溪

不同供热热源的环境影响分析

热源类型	供热容量	供热面积	年耗煤量	污染	k物排放量(t/	(a)
然体大生	(MW)	(万m2)	(tce/a)	烟尘	S02	NOX
分散小锅炉	500	486	1758033	6359	5784	4215
热电厂 (在建)	700	1257.7	1787429 ²⁷	273. 9	950. 1	1003.3
		热电厂的*	市煤/减排情况	分析		
节煤/减排量			-29396	6085. 1	4833. 9	3211.7
单位煤减排量(t/				24 64	27 50	10 26
万 tce)				34. 64	27. 58	18. 36

采暖锅炉清洁能源替代案例及政策研究

案例城市——石家庄

石家庄采暖锅炉改造的环境效益分析

清洁能	锅炉数量	减量燃煤量	清洁能源	烟尘削减量	S02 减排量	NOX 减排量
源类型	(台)	(万 tce/a)	消耗量	(t/a)	(t/a)	(t/a)
天然气	179	33. 20	13263万 m3/a	657. 61	2556. 52	913.04
煤气	2	0.06	48.5万m3/a	1.22	4. 75	1. 70
电	36	1. 01	4501.4万 kWh/a	42. 36	77. 49	29. 16
合计	217	34. 27	-	701. 18	2638. 76	943. 90

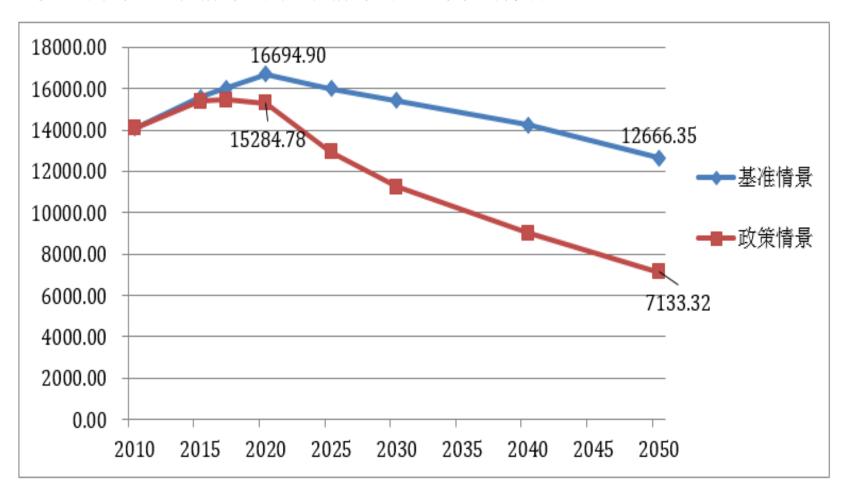
结论:采暖锅炉清洁能源替代与集中供热相比,前期投入较少,运行成本高。当前条件下,成本最优的煤炭减量方案是:优先选用集中供热,无法实现集中供热地区,可根据当地实际情况选用成本最低的替代能源

重点行业节煤的技术路径和政策措施

重点行业	节能技术路径	节能政策措施
电力行业	高效清洁的燃煤技术	大力推广节能技术
	天然气调峰电站	合理的电价机制、战略协同机制、监管机制
	先进的储能技术	优化火电结构与布局
	核电	火电机组节能改造与升级
	可再生能源发电技术	
钢铁行业	炼焦节煤技术	大力推广可再生能源
	充分回收利用二次能源、各	推广先进节能技术工程
	生产环节中散失的载能体和	注重废钢资源的回收利用
	能量	注重二次能源的回收利用
	提高炼铁炉料球团矿配比	推进产业融合,发展循环经济
水泥行业	燃料替代	全面淘汰落后产能和落后技术
	原料替代	严格执行产业政策和行业准入政策
	实施综合节能技术	强化能源管理、加强能效对标和能源审计
		指定循环经济鼓励政策
		全面发展散装水泥、预拌混凝土和预拌砂浆
建筑行业	建筑节能改造	合理规划,优化布局,集约发展
	利用生物质能	大型公共建筑能耗监测系统
		优化建筑领域能源结构,加大清洁能源利用
锅炉、电机	对锅炉、电机升级改造	加强煤炭质量管理,扩大洗选比例
等通用设	采用高效、节能的电动机、	促进煤炭分质、高效利用,优化煤炭利用结
备	锅炉、窑炉、风机、泵类等	构
	设备	锅炉、电机能效提升计划

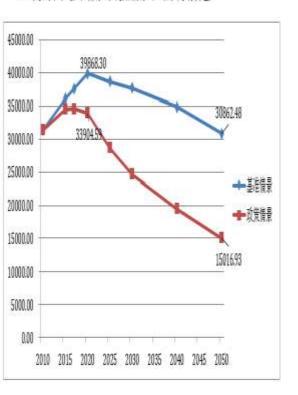
▲通过情景比较,模拟煤炭消费总量"控"和"不控"政策下十三类城市的煤炭消费总量变化趋势

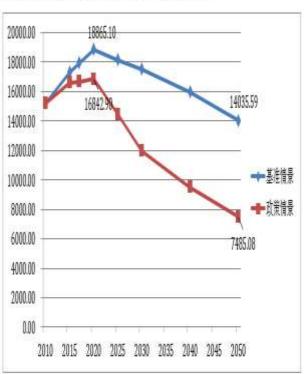
项目	描述
基准情景	在宏观经济缓慢转型和能源技术维持较低水平的情况下,结合高
	耗能行业的发展趋势,能源替代的进程,能源转换和生产技术的
	进步等因素,城市煤炭消费量在各目标年的预测值。
政策情景	实施同煤炭消费总量控制相关的政策,包括应对气候变化挑战
	(碳排放约束)、改善大气污染现状(空气质量约束)、保护生态
	环境(资源环境约束)和各省市(地区)煤炭消费总量控制政策,
	城市煤炭消费总量的趋势变化
基准年	2010 年
目标年	2050 年
研究方法	自上而下计量经济模型
地理边界	对 293 个地级城市分类得到的 13 类城市
分析内容	到 2050 年及期间的城市煤炭消费总量


☞宏观经济基本假设

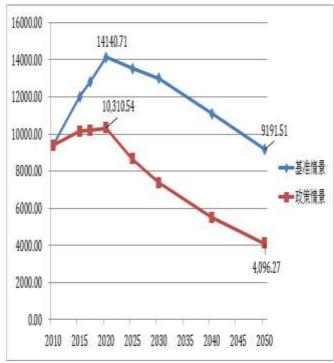
城市类型	2010-2050 年地区生产总值年均增长率预测						
从 中天生	2010-2015	2016-2020	2021-2025	2026-2030	2031-2040	2041-2050	
低煤炭消费强度	7. 6%	7. 0%	6. 2%	4. 4%	2. 9%	2. 1%	
中煤炭消费强度	7. 7%	7. 1%	6. 3%	4. 5%	3. 0%	2. 2%	
高煤炭消费强度	8. 2%	7. 5%	6. 7%	4. 9%	3. 5%	2. 7%	
全国	7. 69%	7. 08%	6. 28%	4. 48%	3. 00%	2. 20%	

◆十三类城市基准情景与政策情景比较-S类

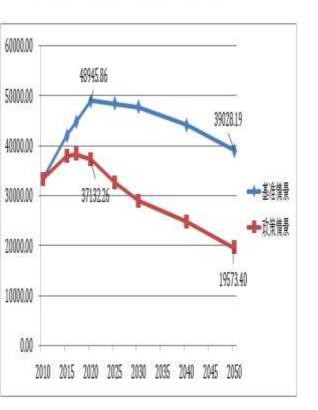

S类城市在基准情景与政策情景下的煤炭消费量

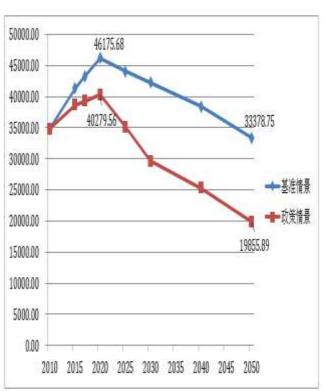


→十三类城市基准情景与政策情景分析结果比较—A-1类,A-2类, A-3类

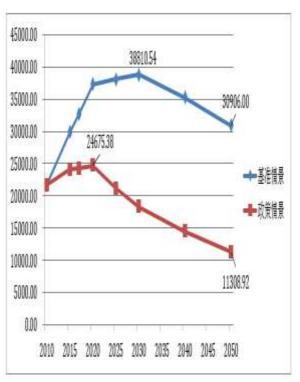

A-1 类城市在基准债景与政策情景下的煤炭消费量

A-2类城市在基准情景与政策情景下的煤炭消费量

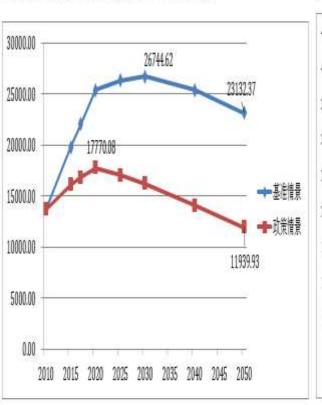

A-3 类城市在基准情景与政策情景下的煤炭消费量

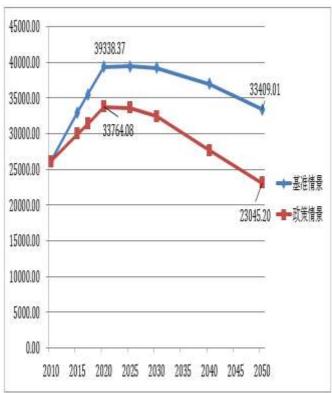


→十三类城市基准情景与政策情景分析结果比较-B-1类, B-2类, B-3类

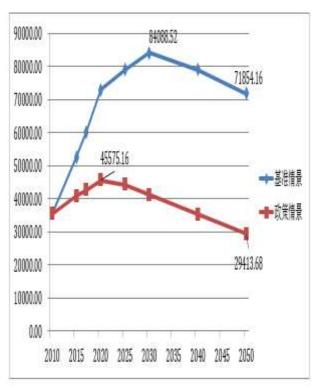

B-1 类城市在基准情景与政策情景下的煤炭消费量

B-2 类城市在基准情景与政策情景下的煤炭消费量

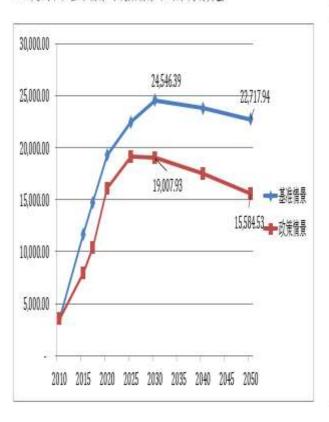

B-3 类城市在基准情景与政策情景下的煤炭消费量

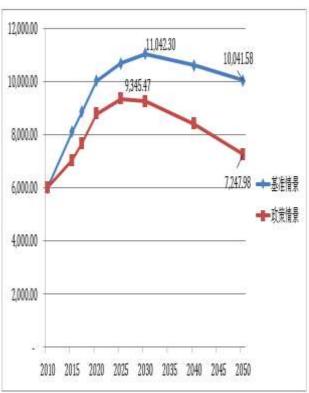


◆十三类城市基准情景与政策情景分析结果比较——C-1 类, C-2类, C-3类

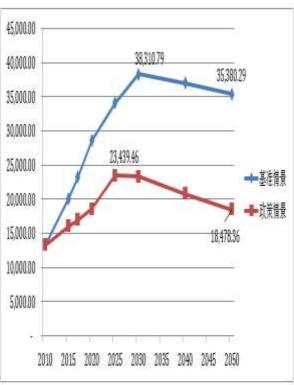

C-1 类城市在基准情景与政策情景下的煤炭消费量

C-2 类城市在基准情景与政策情景下的煤炭消费量

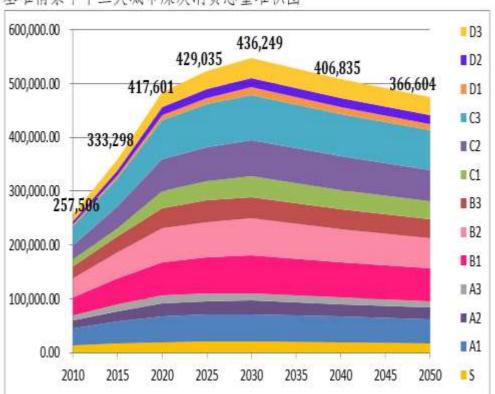

C-3 类城市在基准情景与政策情景下的煤炭消费量

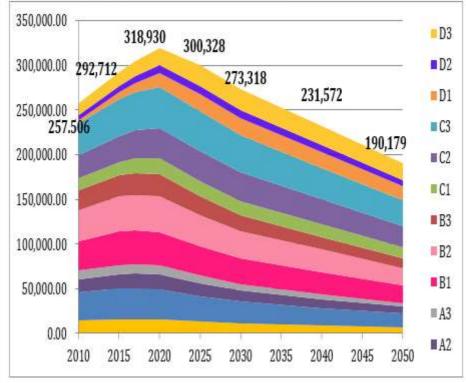


◆十三类城市基准情景与政策情景分析结果比较——D-1 类, D-2类, D-3类


D-1 类城市在基准情景与政策情景下的煤炭消费量

D-2 类城市在基准情景与政策情景下的煤炭消费量


D-3 类城市在基准情景与政策情景下的煤炭消费量



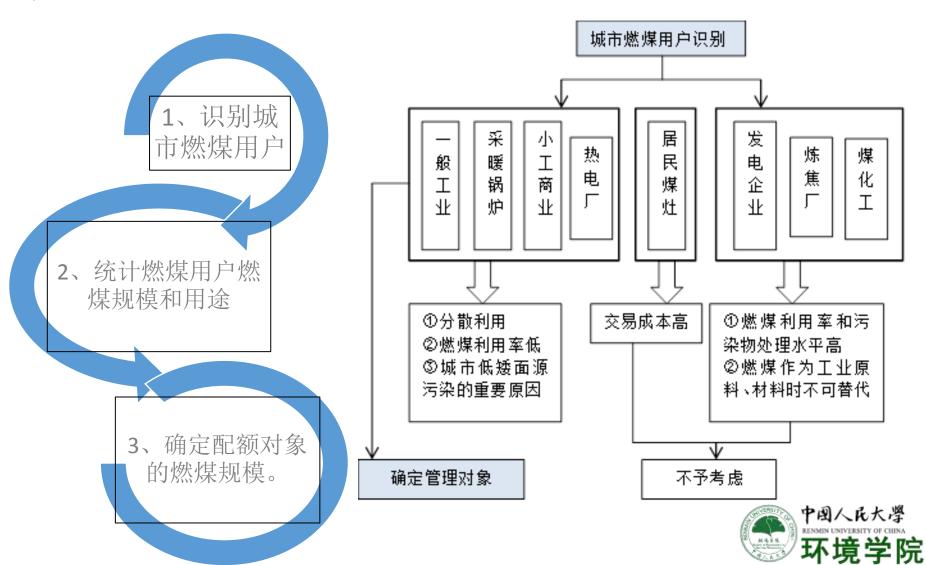
▲两种情景下十三类城市的煤炭消费总量堆积图比较

基准情景下十三类城市煤炭消费总量堆积图

政策情景下十三类城市煤炭消费总量堆积图

政策情景下十三类城市煤炭消耗量占总量比例

序号	年份	2010 年	2020 年	2030 年	2040 年	2050 年
1	S	5. 47%	5. 47%	4. 12%	3. 90%	3. 75%
2	A1	12. 16%	12. 16%	9. 01%	8. 41%	7. 90%
3	A2	5. 90%	5. 90%	4. 38%	4. 11%	3. 94%
4	А3	3. 64%	3. 64%	2. 69%	2. 37%	2. 15%
5	B1	12.91%	12.91%	10. 56%	10.68%	10. 29%
6	B2	13. 51%	13. 51%	10.84%	10.90%	10. 44%
7	В3	8. 40%	8. 40%	6. 70%	6. 26%	5. 95%
8	C1	5. 31%	5. 31%	5. 94%	6. 07%	6. 28%
9	C2	10. 12%	10. 12%	11.87%	11.92%	12. 12%
10	C3	13. 73%	13. 73%	15. 04%	15. 21%	15. 47%
11	D1	1. 36%	1. 36%	6. 95%	7. 55%	8. 19%
12	D2	2. 33%	2. 33%	3. 38%	3. 63%	3. 81%
13	D3	5. 16%	5. 16%	8. 53%	8. 98%	9. 72%


政策建议——城市煤炭消费总量和配额交易制度

- ♣ 煤炭总量削减目标、配额及配额分配
- 配额许可证、消费报告和核查规范
- ◆ 交易规则和交易平台
- ◆ 与相关政策协调

燃煤用户识别与管理对象确定

步骤

燃煤用户识别与管理对象确定: 石家庄案例

石家庄市各类纳入煤炭配额交易的 燃煤用户数据统计

燃煤用户	数量 (家)	比例(%)	燃煤量 (吨 / 年)	燃煤量 占比 (%)
一般工业	109	37.4	1788120	66.0
小工商业	34	11.7	33465	1.2
采暖锅炉	146	50.2	414690	15.3
热电厂	2	0.7	472571	17.4
总数	291	100	2708846	100

石家庄配额对象的燃煤规模分布

燃煤量N(吨/年)	数量(家)
N<100	35
100≤N<500	43
500≤N<1000	50
1000≤N≤2000	46
2000≤N<4000	38
4000≤N<10000	32
10000≤N≤30000	30
30000≤N<100000	11
N≥100000	6 中国人民
	1 .54, 610,

燃煤配额的界定与分配

₩配额时间尺度:

- 按年度分配,上年指标可以继续使用,但不能提前使用
- 有效期: 15年(到2030年)
- ➡配额计量单位:实物量,吨/年
 - 实物量与燃煤污染程度联系更紧密。

☞煤炭配额分配方案

- 城市政府自行确定减量目标【每年平均减量或逐渐加速减量等】
- 初始燃煤配额分配
 - 免费分配,企业自主申报:采用历史数据法给煤炭用户计算并分配配额,即面额数量=历史消费量×(1-削减系数)。
- 燃煤配额在减煤期全部有效
 - ●燃煤配额价格将逐年升值; ❷降低由于煤炭消费总量控制而给城市经济增长带来的影响
- 新燃煤用户必须在市场上购买燃煤配额
 - ●严格确保城市煤炭消费总量削减目标的实现; ②活跃煤炭配额交易**标镜学院**

核查机制设计

核查对象自 查报告

第三方机构 审核

主管部门评 估抽查

▲燃煤用户配额制度主要内容

- · 颁布城市燃煤减量计划 (至少10年)
- 配额证申请,提供详细燃煤信息;
- 配额证的审批和免费发放;
- 配额自愿交易制度
- 年度配额消费报告制度
- 年度配额核查和公示制度

借助相关节能工作成果完善核查机制

▲重点用能单位能源计量及报告制度

- "能源利用状况报告"包括:基本情况表、能源消费结构表、能源实物平衡表等共11份表。
- JJFl356—2012《重点用能单位能源计量审查规范》于2012年11月实施,要求用能单位在接受审查之前,要形成包括:本单位基本情况和组织机构设置框图、能源计量自查报告、管理制度、统计报表、人员、主要用能设备、器具台账、能源流向图等18套资料。能源计量也包括煤炭的计量,《能源计量监督管理办法》对于本报告的煤炭计量具有指导意义。

▲重点用能单位能耗在线监测试点工作

- 国家发改委2013年印发《关于开展重点用能单位能耗在线监测试点工作的通知》。
- 如果重点用能单位能耗在线监测系统成功运行,燃煤用户煤炭消费在线监测也有可能,可将燃煤用户直接纳入正在建设的能耗在线监测系统,对煤炭消费核查将起到重要作用,大大降低了煤炭配额交易制度的社会成本。

处罚机制

▲经济处罚的设计原则:违法成本大于违法收益

- 违法成本=罚款数额(直接损失)+违法造成负面影响带来的经济损失(间接损失)
- 违法收益=减少的其他能源支出+减少的环保设施和技术改造成本

◆ 经济处罚标准的设定

- 处罚的成本一定要大于燃煤企业采用替代能源(如电、天然气)的成本,用电或天然气成本作为处罚的基本依据。当企业超出配额时,计算超出的煤炭相当于的电或天然气数量,乘以电、天然气的当年最高价。
- 以电的替代成本为例说明处罚成本的公式:

$$C = \frac{(m' - m) \times 1000 \times 7000 \times 4185.85}{3.6 \times 10^{6}} \times P_{\text{max}} \times \alpha$$

C表示处罚成本,→

m 是企业每年的燃煤配额(单位:吨)→

m'表示企业最终的燃煤量(单位:吨)↓

(m'-m)即企业超出配额的燃煤量↓

₽……表示电的当年最高价↓

lpha表示处罚倍率,设定lpha>1,以提高处罚的有效威慑性。<

城市煤炭(直接燃烧)消费配额及配额交易制度的优势

- ▲目标的确定性
 - 城市政府确定城市总体燃煤减量目标
 - 减量目标用配额分配到每个燃煤用户,用户的减量自行决定。
- ▲降低社会成本
 - 灵活减量,降低燃煤用户的减量成本
 - 降低政府燃煤减量的信息收集成本
- ♣制度的核心内容是配额核查
 - 燃煤配额的核查成本,比二氧化碳、空气污染物低
 - 核查可以委托第三方核查, 市场的高效率
 - 信息公开,利于改进城市燃煤减量和其他政策(节能、污染物减排)

煤炭配额交易与其他主要环境政策

- ▲煤炭配额交易与中国碳排放权交易
 - 碳排放权交易还没有实施,实施后,可以部分替代煤炭配额交易
 - 在碳排放市场建立后,城市政府仍然可以继续实施燃煤配额交易,因为碳减排不完全等同污染物减排。
- ▲煤炭配额交易与排污许可证制度
 - 空气排污许可证制度也需要一定的时间
 - 固定源排污许可证制度可以替代燃煤配额交易制度

◆经济激励措施矩阵

	·		
具体政策 城市类别	排污权交易(碳交易)	环境税(税率)	资源税 (税率)
S类	√	亩	中
A-1 类	√	高	中
A-2 类	√	高	中
A-3 类	√	中	高
B-1 类	√	高	中
B-2 类	√	高	中
B-3 类	√	中	高
C-1 类		中	低
C-2 类		中	中
C-3 类		低	高
D-1 类		中	低
D-2 类		中	低
D-3 类		低	高

▲淘汰落后产能政策程度分级矩阵

分级 城市类别	禁止发展	强制淘汰	鼓励淘汰	规模化发展
S类	√			
A-1 类	√			
A-2 类	√			
A-3 类		√		
B-1 类		√		
B-2 类		√		
B-3 类			√	
C-1 类		√		
C-2 类			√	
C-3 类			√	
D-1 类			√	
D-2 类				√
D-3 类				~

▲电力行业适用政策矩阵

具体政策 城市类别	核能和可再生能源 (核能、风能、太阳 能、生物质能等)	提高火电效率	智能电网
S类	√		~
A-1 类	√		~
A-2 类	√		√
A-3 类	√	√	~
B-1 类	√		√
B-2 类	√		~
B-3 类	√	√	~
C-1 类	√		
C-2 类	√		
C-3 类	√	√	
D-1 类	√		
D-2 类	√		
D-3 类	√	√	

▲建筑、民生方面适用政策矩阵

具体政策 城市类别	绿色新建 筑	老建筑改造	智能电表	分户计量 (暖气等)	煤改电	煤改气
S类	√	√	√	√	√	√
A-1 类	√	√	√		√	√
A-2 类	√	√	√	√	√	√
A-3 类	√	√	√		√	√
B-1 类	~	√	√			
B-2 类	√	√	√			
B-3 类	√	√	√		√	
C-1 类		√				
C-2 类		√		√		
C-3 类		√				
D-1 类		√				
D-2 类		√				
D-3 类		√				

政策建议

--13类城市煤控政策措施方案

▲关键时间段政策矩阵	
------------	--

ープ	7 链的问权以来和许	
	2010-2020 年	2020-2030 年
s 类	经济激励型和命令控制型相结合,环境税或排污费高于全国平均水平、逐渐严格禁止高耗能行业、重视建筑和民用领域的节煤措施	<u>碳市场</u> 逐渐发挥越来越大的作用,增大可再生能源 比例
A-1 类	经济激励型和命令控制型相结合,环境税或排污费高于全国平均水平,鼓励可再生能源、能源效率提高	<u>碳市场</u> 逐渐发挥越来越大的作用,严格禁止高耗能 行业、增大可再生能源比例、重视建筑和民用领域 的节煤措施
A-2 类	经济激励型和命令控制型相结合,鼓励可再生能源、 能源效率提高	<u>碳市场</u> 逐渐发挥越来越大的作用,环境税或排污费 高于全国平均水平、严格禁止高耗能行业、增大可 再生能源比例、重视建筑和民用领域的节煤措施
A-3 类	经济激励型和命令控制型相结合,资源税高于全国平均水平,强制淘汰高耗能行业	
B-1 类	经济激励型和命令控制型相结合,环境税或排污费高于全国平均水平,鼓励可再生能源、能源效率提高、强制淘汰高耗能行业、重视建筑和民用领域的节煤措施	
B-2 类		经济激励型和命令控制型相结合,环境税或排污费 高于全国平均水平,鼓励可再生能源、能源效率提 高,强制淘汰高耗能行业、重视建筑和民用领域的 节煤措施
B-3 类	命令控制型为主,同时施行高于全国平均水平的资源 税,制定鼓励淘汰高耗能行业的政策措施	进一步加强能源梯级利用、燃料替代和原料替代, 促进高耗能产业规模化发展,促进产业转型升级, 增大可再生能源比例、重视建筑和民用领域的节煤 措施
C-1 类	经济激励型和命令控制型相结合,鼓励可再生能源、 能源效率提高、强制淘汰高耗能行业、重视建筑和民 用领域的节煤措施	
C-2 类	经济激励型和命令控制型相结合, 鼓励可再生能源、 能源效率提高、制定鼓励淘汰高耗能行业的政策措施	
C-3 类	命令控制型为主,同时施行高于全国平均水平的资源 税,制定鼓励淘汰高耗能行业的政策措施	加强能源梯级利用、燃料替代和原料替代,促进高 耗能产业规模化发展,促进产业转型升级,增大可 再生能源比例、重视建筑和民用领域的节煤措施
D-1 类		经济激励型和命令控制型相结合,鼓励可再生能源、 能源效率提高,制定鼓励淘汰高耗能行业的政策措施、重视建筑和民用领域的节煤措施
D-2 类		经济激励型和命令控制型相结合,鼓励可再生能源、 能源效率提高,促进高耗能行业规模化发展、重视 建筑和民用领域的节煤措施
D-3 类	命令控制型为主,同时施行高于全国平均水平的资源 税,大力发展循环经济,促进高耗能行业规模化发展	加强能源梯级利用、燃料替代和原料替代,促进高 耗能产业规模化发展,促进产业转型升级,增大可 再生能源比例、重视建筑和民用领域的节煤措施

再生能源比例、重视建筑和民用领域的节煤措施

不确定分析

- ◆数据的不确定性
 - 各市地区生产总值和能源消费量的数据
 - 各市煤炭消费量及按用途的煤炭消费量数据
- ◆城市分类的不确定性
- ➡基准年选取造成的不确定性
- ◆经济增长率估算的不确定性
- ₩政策建议的不确定性

谢谢,请批评指正!

